Expand each of the following, using suitable identities : $(3 a-7 b-c)^{2}$
$(3 a-7 b-c)^{2}$
Using $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x,$ we have
$(3 a-7 b-c)^{2} =(3 a)^{2}+(-7 b)^{2}+(-c)^{2}+2(3 a)(-7 b)+2(-7 b)(-c)+2(-c)(3 a) $
$=9 a^{2}+49 b^{2}+c^{2}+(-42 a b)+(14 b c)+(-6 c a)$
$=9 a^{2}+49 b^{2}+c^{2}-42 a b+14 b c-6 c a $
Verify whether the following are zeroes of the polynomial, indicated against them.
$p(x)=5 x-\pi, \,\,x=\frac{4}{5}$
Without actually calculating the cubes, find the value of each of the following : $(28)^{3}+(-15)^{3}+(-13)^{3}$
Verify whether the following are zeroes of the polynomial, indicated against them.
$p(x)=2 x+1, \,\,x=\frac{1}{2}$
Write the coefficients of $x^2$ in each of the following :
$(i)$ $\frac{\pi}{2} x^{2}+x$ $ (ii)$ $\sqrt{2} x-1$
Factorise $4 x^{2}+y^{2}+z^{2}-4 x y-2 y z+4 x z$.